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The thermodynamic properties of pressure, energy, isothermal pressure coefficient, thermal expan-
sion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities,
Joule–Thomson coefficient, and speed of sound are considered in a classical molecular dynamics
ensemble. These properties were obtained using the treatment of Lustig [J. Chem. Phys. 100, 3048
(1994)] and Meier and Kabelac [J. Chem. Phys. 124, 064104 (2006)], whereby thermodynamic
state variables are expressible in terms of phase-space functions determined directly from molecular
dynamics simulations. The complete thermodynamic information about an equilibrium system can
be obtained from this general formalism. We apply this method to the Gaussian core model fluid
because the complex phase behavior of this simple model provides a severe test for this treatment.
Waterlike and other anomalies are observed for some of the thermodynamic properties of the
Gaussian core model fluid. © 2011 American Institute of Physics. [doi:10.1063/1.3559678]

I. INTRODUCTION

In a classical molecular dynamics (MD) simulation only
a few thermodynamic state variables like the pressure and
the temperature are calculated. This means that additional
methods such as equations of state or fluctuation theory ap-
proaches have to be used for the calculation of other ther-
modynamic properties of the system. However, it was shown
by Lustig1–4 and recently Meier and Kabelac5 that there is a
straightforward way to set up the complete thermodynamics
via a general statistical mechanical formalism. In principle,
this method allows a systematic and rigorous calculation of
thermodynamic derivatives to arbitrary order without any re-
strictive approximations commonly required by conventional
approaches such as equations of state. Lustig1–4 showed that
it is possible to calculate thermodynamic state variables from
key derivatives obtained directly from either molecular dy-
namics or Monte Carlo (MC) simulations.

The method is based on the exact expressions for the ther-
modynamic state variables reported by Pearson et al.6 for the
microcanonical ensemble or NVE ensemble using a Laplace
transform technique. Cağin and Ray7 used this technique to
derive expressions in the molecular dynamics ensemble or
NVEP ensemble. This is a subset of the NVE ensemble where
the additional constraint of constant total momentum (P or
equivalently �P) is used in the formulation of the phase-space
volume. Later, Cağin and Ray8 applied this approach to a
canonical molecular dynamics ensemble or NVTP ensemble
and Lustig1–4 extended the method to systems of rigid poly-
atomic molecules. Meier and Kabelac5 developed further im-
provements of this technique for an extended molecular dy-
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namics ensemble or NVEPG ensemble with a quantity (G or
equivalently �G), which is related to the initial position of the
center of mass as an additional constant of motion:

�G = �Pt −
N∑

i=1

mi �ri (t), (1)

where mi and �ri denote the mass and the position of particle
i, t is the time and �P = ∑

i �pi is the total momentum of the
system.

In this study we apply the extension of Meier and
Kabelac5 to accurately determine the unusual behavior of
the Gaussian core model (GCM) fluid. The bounded GCM
potential introduced by Stillinger9 has received considerable
interest because of its ability to describe properties of soft
condensed matter.10 Furthermore, the GCM fluid displays
a rich scenario of waterlike anomalies associated with re-
entrant melting behavior.11–23 However, the thermodynamic
properties of the GCM are far from being completely un-
derstood and the occurrence of a whole range of anomalous
properties suggest that the GCM possesses unexplored
anomalies similar to water, which might have implications
for a broad range of waterlike potentials.

The aim of this work is therefore twofold. First, the
GCM system provides a severe test for the calculation of ther-
modynamic state variables using molecular dynamics in the
NVEPG ensemble. A successful application of this compre-
hensive treatment may initiate further studies for systems with
unusual thermodynamic properties. Second, we endeavor to
complete our understanding of the unusual thermodynamic
behavior of the GCM. To the best of our knowledge, the use
of the NVEPG ensemble in such a general way has not been
reported previously.
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II. SIMULATION METHOD

A. Brief overview of the method

Lustig1–4 showed that in general all thermodynamic state
variables could be obtained from derivatives determined di-
rectly from MD simulations in a classical NVEP ensem-
ble. In this work, we use the NVEPG ensemble extension
of this method developed by Meier and Kabelac5 for which
entropy S = S(N , V, E, �P, �G) is the fundamental equation
of state for the system. In common with a microcanoni-
cal ensemble, this approach involves the number of par-
ticles (N), volume (V), and energy (E). However, the to-
tal momentum of the system ( �P) and a quantity �G, which
is related to the initial position of the center of mass, are
also used as additional constants of motion. Meier and
Kabelac5 also corrected an error in the general equation for
the volume derivatives of the potential energy reported by
Lustig.4

The fundamental equation of state for the system can be
defined by the entropy postulate

S(N , V, E, �P, �G) = k ln � (N , V, E, �P, �G), (2)

where � (N , V, E, �P, �G) is the phase-space volume and k is
the Boltzmann constant. We use � instead of the phase-space
density ω for reasons discussed elsewhere.5 A comparison
between the use of � and ω is given by Lustig.1 The basic
phase-space functions are then introduced as an abbreviation
representing the derivatives of the phase-space volume with
respect to the independent thermodynamic state variables E
and V:

�mn = 1

ω

∂m+n�

∂ Em∂V n
. (3)

The exact derivation of the phase-space function is quite
involved5 and is not repeated here. The resulting general ex-
pression is given by

�mn = V −n(−1)m 2

3N − 3

(
−3N − 3

2

)
m

(−1)n(−[N − 1])n〈K −(m−1)〉 + (1 + δ0n)
n∑

i=1

(n

i

)
(−1)n−i (−[N − 1])n−i

×V i−n 2

3N − 3

i∑
l=1

(−1)m+l

(
−3N − 3

2

)
m+l

〈
K −(m+l−1)

(k max(i,l)∑
k=1

cilk Wilk

)〉
, (4)

and is related to ensemble averages of products of pow-
ers of the kinetic energy K = E − U (�r N ) and of volume
derivatives of the potential energy ∂nU/∂V n . In Eq. (4),
〈· · ·〉 denotes ensemble averages, (x)n = x(x + 1)(x + 2) · · ·
(x + n − 1) represents the Pochhammer symbol with (x)0

= 1 and δi j is the Kronecker delta. The term cilk Wilk is a prod-
uct of certain volume derivatives of the potential energy Wilk

= (−∂ iU/∂V i )(−∂kU/∂V k) · · ·, and of multinomial coeffi-
cients cilk described in detail elsewhere.5 The correct volume
derivatives of nth order for the potential energy are given by

∂nU

∂V n
= 1

3n V n

N−1∑
i=1

N∑
j=i+1

n∑
k=1

ankrk
i j

∂ku

∂rk
i j

, (5)

where u is the pair potential energy and rij denotes the dis-
tance between particle i and j. The coefficients ank are con-
structed using a recursion relation.5 All thermodynamic state
variables are then expressible in terms of the phase-space
function. The derivation of this procedure was described in
detail by Lustig1 and is, therefore, not explained here. The re-
sulting thermodynamic state variables we use in our study are
summarized in Table I. Explicit expressions for phase-space
functions of low order are given elsewhere.5

B. Simulation details

The NVEPG–MD simulations were performed for a ho-
mogeneous fluid of 1000 particles interacting via a GCM

potential of the form

u(r ) = ε exp

[
−

( r

σ

)2
]

, (6)

where ε and σ are the height and width of the potential
and r is the distance between two particles. The normal
conventions were used for the reduced density (ρ∗ = ρ σ 3),
temperature (T ∗ = kT/ε), energy (E∗ = E/ε), pressure (p∗

= p σ 3/ε), time (τ ∗ = τ
√

ε/mσ 2), heat capacities (C∗
P,V

= CP,V /k), compressibilities (β∗
T,S = βT,Sε/σ

3), isothermal
pressure coefficient (γ ∗

V = γV σ 3/k), thermal expansion coef-
ficient (α∗

p = αPε/k), speed of sound (w∗
0 = w0

√
m/ε), and

the Joule–Thomson coefficient μ∗
JT = μJTk/σ 3 (m is the mass

of the particles). All quantities quoted in this work are in terms
of these reduced quantities and the asterisk superscript will be
omitted in the rest of the paper.

The simulations covered densities ranging from ρ = 0.03
to 1.2 and temperatures ranging from T = 0.002 to 3.0 omit-
ting the solid-state region of the model. For low temperatures
(up to T = 0.1), we used very small temperature increments
in order to sample the phase-space region with anomalous
phase behavior with high accuracy. The equations of motion
were integrated using a five-value Gear predictor-corrector
scheme24 with a time step of τ = 0.003. For each state point
simulation trajectories were run for 4 × 106 time steps to
equilibrate the system. Periods of 12 × 106 time steps were
used up to temperatures of T = 0.3 and 8 × 106 time steps
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TABLE I. Relations of thermodynamic state variables in terms of phase-space functions.

Temperature T =
(

∂ E

∂S

)
V

= �00

k

Pressure p = T

(
∂S

∂V

)
E

= �01

Isochoric heat capacity CV =
[(

∂2 S

∂ E2

)
V

]−1

= k(1 − �00�20)−1

Isothermal pressure coefficient γV =
(

∂p

∂T

)
V

= k
�11 − �01�20

1 − �00�20

Isothermal compressibility β−1
T = −V

(
∂p

∂V

)
T

= V

[
�01(2�11 − �01�20) − �00�

2
11

1 − �00�20
− �02

]

Isentropic compressibility β−1
S = −V

(
∂p

∂V

)
S

= V [�01(2�11 − �01�20) − �02]

Speed of sound w2
0 = − V 2

M

(
∂p

∂V

)
S

= V 2

M
[�01(2�11 − �01�20) − �02]

Thermal expansion coefficient αP = βT γV

Isobaric heat capacity CP = CV
βT

βS

Joule–Thomson coefficient μJT = V
T γV βT − 1

CP

for temperatures T > 0.3 to accumulate the average values of
the thermodynamic state variables. The cut-off radius for the
potential was 3.2σ .

III. RESULTS AND DISCUSSION

A. Energy and pressure

The potential energy per particle U/N as a function of
temperature at different constant densities is illustrated in
Fig. 1. The energy grows monotonically along isochors with
increasing temperature and along isotherms with increasing
density. Stronger gradients occur at low temperatures and at
high densities. In Fig. 2(a), the isochoric temperature depen-
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2.0
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2.8

3.2

U/N

T

FIG. 1. Potential energy per particle U/N as a function of temperature for
different constant densities of ρ = 0.03 (�), 0.06 (�), 0.1 (�), 0.15 (�), 0.2
(�), 0.25 (●), 0.3 (�), 0.4 (�), 0.5 (�), 0.6 (�), 0.7 (�), 0.8 (�), 1.0 (★),
1.2 (�).

dence of the pressure is shown where the slope of the pressure
exhibits a pressure minimum at low temperatures. Figure 2(b)
shows a close-up of this region for densities ranging from ρ

= 0.4 to 1.2. To avoid a large pressure scale the pressure iso-
chors are shifted by values given in Fig. 2(b). The pressure
minimum corresponds to the well-known density maximum11

for water at constant pressure. Connecting the points
corresponding to the minimum pressure on each isochor de-
fines the so-called temperature of maximum density (TMD)
line.12 Apart from this known anomaly the pressure grows
monotonically with increasing temperature and increasing
density. The energy and pressure data obtained in this study
are in very good agreement with MC simulation results re-
ported elsewhere.12, 20

B. Isothermal pressure coefficient

By definition, the isothermal pressure coefficient γV be-
comes negative in phase-space regions with anomalous den-
sity behavior. This can be seen clearly in Fig. 3 where the iso-
choric temperature dependence of γV is shown. For densities
from ρ = 0.03 to 0.2, γV decreases with increasing tempera-
ture and develops along the isochor at ρ = 0.25, a weak max-
imum at low temperatures [Fig. 3(b) shows a close-up of this
region]. For densities ρ ≥ 0.3, the temperature dependence of
γV changes, γV increases with increasing temperature. This
is an interesting result since (∂γV /∂T )V changes sign from
negative (for ρ < 0.25) to positive (for ρ > 0.25). The ther-
modynamic identity

T

(
∂γV

∂T

)
V

= T

(
∂2 p

∂T 2

)
V

=
(

∂CV

∂V

)
T

= − ρ

V

(
∂CV

∂ρ

)
T

(7)
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FIG. 2. Pressure as a function of temperature for different constant densities
(a) ranging from ρ = 0.03 to 1.2 for temperatures up to T = 3.0 and (b)
ranging from ρ = 0.4 to 1.2 for temperatures T ≤ 0.05. In (b) the pressure
isochors are shifted by values indicated on the lines in order to avoid a large
pressure scale. Symbols are the same as in Fig. 1.

then implies that the constant volume heat capacity CV ex-
hibits a maximum along an isotherm in the (ρ,T) plane. For
densities ρ ≥ 0.4, γV becomes negative at low temperature
where γV = 0 again defines the TMD line.

C. Isothermal and adiabatic compressibilities

In Fig. 4 the isothermal compressibility βT as a func-
tion of temperature at different constant densities is illus-
trated. The isothermal compressibility decreases sharply with
increasing temperature for densities ranging from ρ = 0.03
to 0.1 [see Fig. 4(a)] whereas the slopes of βT for densities
ρ ≥ 0.2 exhibit a maximum at low temperature [see inset of
Fig. 4(a)]. In Fig. 4(b) a close-up of this region for densities
ranging from ρ = 0.2 to 0.8 is shown. To avoid a large scale
in βT the compressibility isochors are shifted by values given
in Fig. 4(b). Using purely thermodynamic arguments Sastry
et al.25 showed that the isothermal compressibility βT must
increase upon isobaric cooling if the TMD line has a negative
slope [(∂p/∂T )TMD< 0] in the (p, T) plane. It is known that
water shows an anomalous increase in βT below T = 46 ◦C
corresponding to atmospheric pressure. Since the TMD line
for the GCM has negative slope12 it is of interest to inves-
tigate the βT behavior at constant pressure. In Fig. 4(c), we
show the temperature dependence of βT for three different
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FIG. 3. Isothermal pressure coefficient γV as a function of temperature for
different constant densities (a) ranging from ρ = 0.03 to 1.2 for temperatures
up to T = 3.0 and (b) ranging from ρ = 0.2 to 0.7 for temperatures T ≤ 0.2.
Symbols are the same as in Fig. 1.

isobars between p = 2.0 and 3.0. Despite the fact that we
computed this data directly from the numerical p(ρ, T ) values
without any smoothing procedure βT shows behavior similar
to water with a clear minimum and the magnitude of βT val-
ues are in good agreement with those given elsewhere.12

It is of interest to compare the isothermal and the adia-
batic compressibility. In Fig. 5 the isothermal compressibility
βT (solid lines) and the adiabatic compressibility βS (dashed
lines) as a function of temperature at different constant den-
sities is illustrated. In general, βS lies below βT except at
the TMD where both compressibilities touch each other. The
thermodynamic identities

CP − CV = TβT γ 2
V

ρ
(8)

and

CP

CV
= βT

βs
(9)

mean that CP and CV as well as βT and βS are equal at the
TMD (γV = 0). A close-up of this region is shown in the in-
set of Fig. 5 where the curves are shifted by values given in
parentheses.
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FIG. 4. (a) Isothermal compressibility βT as a function of temperature for
different constant densities ranging from ρ = 0.03 to 0.2 in the main frame
and from ρ = 0.2 to 1.2 in the inset. (b) βT -Isochors ranging from ρ = 0.2 to
0.8 for temperatures T ≤ 0.09. Symbols are as in Fig. 1. (c) Isothermal com-
pressibility βT as a function of temperature for different constant pressures
of p = 2.0 (�), 2.5 (●) and 3.0 (�). The βT -isochors in (b) and the isobars in
(c) are shifted by values indicated on the lines in order to avoid a large scale.

D. Thermal expansion coefficient

For water, it is known that the thermal expansion coef-
ficient αP becomes negative below T = 4◦C at atmospheric
pressure. As a consequence of the thermodynamic identity
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FIG. 5. Isothermal compressibility βT (solid lines) and the adiabatic com-
pressibility βS (dashed lines) as a function of temperature for different con-
stant densities ranging from ρ = 0.3 to 0.8 in the main frame and from
ρ = 0.4 to 0.8 in the inset. In the inset the curves are shifted by values given
in parentheses in order to avoid a large scale.

αP = γV βT , this is also true for the GCM11, 12 for state
regions with γV < 0 since βT is always positive in a one-
phase region. In Fig. 6(a), we show the temperature depen-
dence of αP for different constant densities. Following the
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

FIG. 6. The thermal expansion coefficient αP as a function of temperature
for different constant densities (a) ranging from ρ = 0.03 to 1.2 for temper-
atures up to T = 2.0 and (b) ranging from ρ = 0.3 to 1.2 for temperatures T
≤ 0.08. Symbols are as in Fig. 1.
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FIG. 7. (a) Specific heat CP at constant pressure as a function of temperature
for different constant densities ranging from ρ = 0.03 to 1.2. Symbols are as
in Fig. 1. (b) CP as a function of density for different constant temperatures
of T = 0.006 (�), 0.01 (●), 0.015 (�), 0.02 (�), 0.025 (�), 0.03 (�), 0.04
(�), 0.05 (�), 0.06 (★), 0.1 (�), 0.3 (�). (c) CP as a function of temperature
for different constant pressures of p = 1.0 (�), 2.5 (●) and 4.0 (�).

behavior of βT at low densities the thermal expansion co-
efficient αP decreases sharply with increasing temperature
for densities ranging from ρ = 0.03 to 0.2 [see Fig. 6(a)].
In the range of ρ = 0.25 to 0.4 αP exhibits a maximum at
low temperature. Negative thermal expansion coefficients oc-
cur for ρ ≥ 0.4 and low temperature. In Fig. 6(b), a close-up
of this region for densities ranging from ρ = 0.3 to 1.2 is
shown.
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FIG. 8. (a) Specific heat CV at constant volume as a function of temperature
for different constant densities ranging from ρ = 0.03 to 0.2 in the main
frame and from ρ = 0.3 to 1.2 in the inset. Symbols are as in Fig. 1. (b) CV

as a function of density for different constant temperatures of T = 0.002 (�),
0.006 (●), 0.01 (�), 0.015 (�), 0.02 (�), 0.025 (�), 0.03 (�), 0.04 (�), 0.05
(★), 0.07 (�), 0.1 (�), 0.15 (�), 0.25 (�), 0.4 (♦), 0.75 (	), 3.0 (
).

E. Isobaric and isochoric heat capacities

In Fig. 7(a), the temperature dependence of the constant
pressure heat capacity CP is shown along various isochors
ranging from ρ = 0.03 to 1.2. CP rises sharply in the vicinity
of the solid–liquid phase boundary. When the temperature is
increased, CP passes through a minimum, followed by a fur-
ther increase upon further heating. The density dependence
of CP for different constant temperatures ranging from T
= 0.006 to 0.3 is shown in Fig. 7(b). The heat capac-
ity isotherms show a pronounced maximum at about ρ

≈ 0.25 that disappears at a temperature of approximately
T ≈ 0.09.

In normal liquids, the heat capacity increases with in-
creasing temperature at constant pressure. Contrary to this
behavior the heat capacity of water has a minimum at
T = 36 ◦C at atmospheric pressure. Against this background,
it is of interest to see whether or not the minimum in CP

along isochors [Fig. 7(a)] also exists at constant pressure. In
Fig. 7(c), we show the temperature dependence of CP for
three different isobars between p = 1.0 and 4.0. Similar to
water the GCM heat capacity CP shows a clear anomalous
minimum along isobars.
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FIG. 9. Joule–Thomson coefficient μJT as a function of temperature for dif-
ferent constant densities (a) ranging from ρ = 0.03 to 1.2 for temperatures
up to T = 3.0 and (b) ranging from ρ = 0.2 to 1.2 for temperatures T ≤ 0.4.
Symbols are the same as in Fig. 1.

The constant volume heat capacity CV as a function of
temperature at different constant densities is illustrated in
Fig. 8(a). Similar to the CP behavior the specific heat at
constant volume CV increases sharply near the solid–liquid
transition line. Contrary to the CP behavior CV decreases
monotonically with increasing temperature without a mini-
mum. For densities ranging from ρ = 0.03 to 0.2 CV increases
at constant temperature and for densities from ρ = 0.3 to 1.2
[shown in the inset of Fig. 8(a)] CV decreases at constant
temperature indicating a maximum in CV along isotherms as
discussed in connection with equation (7). This can be seen
clearly in Fig. 8(b) where the density dependence of CV for
different constant temperatures ranging from T = 0.002 to 3.0
is illustrated. As discussed above a pronounced maximum in
CV occurs at low temperatures at a density of approximately ρ

= 0.25. The maximum disappears at higher temperatures.

F. Joule–Thomson coefficient

In Fig. 9(a), the isochoric temperature dependence of the
Joule–Thomson coefficient μJT is shown. At a density of ρ

= 0.03 μJT grows monotonically with increasing temperature
showing a strong gradient at low temperatures. For densities ρ

≥ 0.06, the slope of μJT exhibits a minimum at low tempera-
tures with strong negative gradients near the liquid–solid tran-
sition. Figure 9(b) shows a close-up of this region for densities
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FIG. 10. Zero frequency speed of sound w0 as a function of temperature for
different constant densities (a) ranging from ρ = 0.03 to 1.2 for temperatures
up to T = 3.0 and (b) ranging from ρ = 0.2 to 0.8 for temperatures T ≤ 0.09.
In (b) the speed of sound isochors are shifted by values indicated on the lines
in order to avoid a large scale in w0. Symbols are the same as in Fig. 1.

ranging from ρ = 0.2 to 1.2. The minimum in μJT is shifted
to higher temperatures when the density increases. In general,
the Joule–Thomson coefficient is negative in the whole range
we have simulated. Therefore, the GCM system does not ex-
hibit a Joule–Thomson inversion curve defined by μJT = 0.

G. Speed of sound

The zero frequency speed of sound w0 as a function
of temperature at different constant densities is illustrated in
Fig. 10(a). For densities ranging from ρ = 0.03 to 0.15, the
speed of sound increases with increasing temperature similar
to normal liquids. Contrary to simple liquid behavior, w0 de-
velops a clear anomalous minimum along isochors for densi-
ties ρ ≥ 0.2 at low temperatures. Figure 10(b) shows a close-
up of this region for densities ranging from ρ = 0.2 to 0.8,
where the w0 isochors are shifted by values given in the fig-
ure in order to avoid a large w0 scale. It is known that wa-
ter exhibits an anomalous maximum in the speed of sound
at T = 74 ◦C at atmospheric pressure.26 The maximum is
shifted to higher temperatures when the pressure increases.
Within the accuracy of our simulation data we could not
find a maximum in the speed of sound along isobars for the
GCM system.
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coexisting line (Ref. 17) (solid line). In the inset: Minima of CP (dashed line)
and minima of μJT (solid line).

H. Comparison of the extrema of thermodynamic
state variables

The course of all extrema found for the thermodynamic
state values along isochors in the ρ,T projection is shown in
Fig. 11. In addition to the solid–liquid coexisting line17 and
the TMD line we show the course of the minima in w0 as
well as the maxima in βT along isochors. Both extrema lines
approximately cross each other at the maximum of the TMD
line. For densities lower than the crossing point the βT ex-
trema line encloses the w0 extrema line. In the inset of Fig. 11
we show the course of the minima of CP and μJT along iso-
chors. Both extrema are shifted to higher temperatures when
the density increases. In general, the CP minima occur at
higher temperatures then the μJT minima.

IV. CONCLUSIONS

Extensive MD simulations for an NVEPG ensemble
were conducted to obtain the general thermodynamic be-
havior for the GCM fluid for a wide range of both density
and temperature. We applied a method where, in principle,
all thermodynamic state variables can be determined directly
from MD simulations. In this approach, the thermodynamic
state variables are expressible in terms of phase-space func-
tions which involve ensemble averages of products of powers
of the kinetic energy and of volume derivatives of the poten-
tial energy.

In addition to the waterlike anomalies such as den-
sity maximum, negative thermal expansion coefficient,11 and
anomaly in the isothermal compressibility12 we also found ad-
ditional peculiarities in the GCM for the isothermal pressure
coefficient, the constant pressure heat capacity, the zero fre-
quency speed of sound and the Joule–Thomson coefficient.

To the best of our knowledge, this is the first application
of the NVEPG ensemble to derive thermodynamic properties
of a fluid system for such an extensive range of both tempera-
ture and density. We believe that the systematic approach used
here can also contribute to the improved understanding of the
thermodynamic properties of fluids in general.
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